
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.

4 - 18 Temperature T(x,y) in plates
Find the temperature distribution T(x,y) and the complex potential in the given thin 
metal plate whose faces are insulated and whose edges are kept at the indicated tempera-
tures or are insulated as shown.

5. Sector

Clear["Global`*⋆"]

kru = RGBColor[0.392, 0.823, 0.98];

According to example 3 on p. 768 the answer will be in the form
cnr[x_, y_] = a θ + b

b + a θ

Looking at the geometry of the figure, the T1 leg has angle -− π
4 , and the T2 leg has angle π4 , 

implying that the boundary conditions are seen in

a -−
π

4
 + b ⩵ T2 , and a 

π

4
 + b ⩵ T1

because of the Arg values of the two T lines, -− π
4  and π4 , which suggests

Solve-−a
π

4
+ b ⩵ -−20 && a

π

4
+ b ⩵ 20, {a, b}

a →
80

π
, b → 0

putting this back into the starting equation



Simplifycnr[x, y] /∕. a →
80

π
, b → 0

80 θ

π

According to example 3 on p. 760, θ=ArcTan y
x 

This is not the complete answer. I need the harmonic conjugate of this expression in order 
to get the complex potential, which is equal to Φ[x,y]+ⅈ Ψ[x,y]. This is simple as pie using 
the identity discussed in problem 15 below and consists of
80 θ

π
= 80 Arg[z]

and the complex potential is

Φ + ⅈ Ψ = -−
ⅈ 80

π
Log[z]

But maybe I would rather find a different harmonic conjugate to go with my Φ function. 
Then with help from utube’s MathSorcerer in https://www.youtube.com/watch?v=tWX8YwKfd_k I 
look for v such that f = u + ⅈ v is analytic. First I need the partials of u:

u[x_, y_] =
80

π
ArcTan

y

x


80 ArcTan y
x


π

D[u[x, y], x]

-−
80 y

π x2 1 + y2

x2


D[u[x, y], y]
80

π x 1 + y2

x2


Since I’m trying to build this to be analytic, I use Cauchy-Riemann, D[v[x,y],y] = 
D[u[x,y],x] and -−D[v[x,y],x] = D[u[x,y],y]. Using the first of the pair of C-R,

D[v[x, y], y] = D[u[x, y], x] = -−
80 y

π x2 1 + y2

x2


So to find the aspect of v which satisfies the y branch I can integrate this partial derivative 
with respect to y

2     18.3 Heat Problems 767.nb



 -−
80 y

π x2 1 + y2

x2


ⅆy

-−
40 Log[x2 + y2]

π

And because I integrated with respect to ⅆ y, I need to add an unknown function of x, 
getting

-−
40 Log[x2 + y2]

π
+ g[x]

g[x] -−
40 Log[x2 + y2]

π

as a candidate v function with symbolic x hang-on function. At this point I can differentiate 
the last expression with respect to x to look for the x aspect of v

Dg[x] -−
40 Log[x2 + y2]

π
, x

-−
80 x

π x2 + y2
+ g′[x]

and the above quantity can be set equal to the partial of v with respect to x which I already 
have (which is equal to the negative of the partial derivative of u with respect to y), thus

-−D[v[x, y], x] =
-−80

π x 1 + y2

x2


= -−
80 x

π x2 + y2
+ g′[x]

Leaving the negative signs in now for consistency

Solve-−
80

π x 1 + y2

x2


⩵ -−
80 x

π x2 + y2
+ g′[x], g′[x]

{{g′[x] → 0}}

Here I assert that integrating at this point produces g[x] equal to C, and I decide to set C=0.

And from here I should be able to build the v function from

v[x_, y_] = Simplify-−
40 Log[x2 + y2]

π


-−
40 Log[x2 + y2]

π

The above expression being only v, the entire complex potential should be equal to
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FullSimplify
80

π
ArcTan

y

x
 + ⅈ

40 Log[x2 + y2]

π


80 ArcTan y
x
 + 40 ⅈ Log[x2 + y2]

π

PossibleZeroQ
80 ArcTan y

x
 + 40 ⅈ Log[x2 + y2]

π
-−

-−80 ⅈ

π
Log[x + ⅈ y] 

False

Oh well, I didn’t expect to come up with the same Ψ as the text. To defend my answer 
(which is less elegant looking than the text’s) I need to verify that Φ and Ψ are analytic.
PossibleZeroQ[D[u[x, y], x] -− D[v[x, y], y]]

True

PossibleZeroQ[D[u[x, y], y] + D[v[x, y], x]]

True

So according to numbered line (2) on p. 760, Φ and Ψ together make up a complex poten-
tial, the thing I was looking for. The yellow cell above matches (in intent though not in 
content) the text answer. Using the mechanical process of the math sorcerer, I am likely to 
come up with rather rough looking though hopefully defensible results.

7. Corner

Clear["Global`*⋆"]

kru = RGBColor[0.392, 0.823, 0.98];

According to example 3 on p. 768 the answer will be in the form
tee[x_, y_] = a θ + b

b + a θ

Looking at the geometry of the figure, the T1 leg has angle 0, and the T2 leg has angle π2 , 

implying that the boundary conditions are seen in

a
π

2
+ b ⩵ T2 , and a (0) + b ⩵ T1
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because of the Arg values of the two T lines, π2  and 0, which suggests

Solvea
π

2
+ b ⩵ T2 && b ⩵ T1, {a, b}

a → -−
2 (T1 -− T2)

π
, b → T1

putting this back into the starting equation

Simplifytee[x, y] /∕. a → -−
2 (T1 -− T2)

π
, b → T1

T1 -−
2 θ (T1 -− T2)

π

substituting ArcTan[ y
x ] for θ and rearranging gives the expression

T1 +
2

π
(T2 -− T1) ArcTan

y

x


Though it matches the text, this is not the complete answer. I need the harmonic conjugate 
of this expression in order to get the complex potential, which is equal to Φ[x,y]+ⅈ Ψ[x,y]. 
This is just as easy as in problem 5.

Φ + ⅈ Ψ = T1 +
-−ⅈ 2

π
(T2 -− T1) Log[z]

There is something to consider about the above expression. In the first green cell it is seen 
that the ArcTan, or Arg component is separate from the T1 component. The T1 component 
will be the Φ and the component containing the Arg device will be the Ψ. So when the -−ⅈ is 
applied, it is only applied to the component with the Arg.

Now I will crank through the process of generating a complex potential mechanically. So 
with another helping hand from utube’s MathSorcerer in https://www.youtube.-
com/watch?v=tWX8YwKfd_k I look for v such that f = u + ⅈ v is analytic. First I need the par-
tials of u:

u[x_, y_] = T1 +
2

π
(T2 -− T1) ArcTan

y

x


T1 +
2 ArcTan y

x
 (-−T1 + T2)

π

D[u[x, y], x]

-−
2 y (-−T1 + T2)

π x2 1 + y2

x2

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D[u[x, y], y]
2 (-−T1 + T2)

π x 1 + y2

x2


Since I’m trying to build this to be analytic, I use Cauchy-Riemann, D[v[x,y],y] = 
D[u[x,y],x] and -−D[v[x,y],x] = D[u[x,y],y]. Using the first of the pair of C-R,

D[v[x, y], y] = -−
2 y (-−T1 + T2)

π x2 1 + y2

x2


So to find the aspect of v which satisfies the y branch I can integrate this partial derivative 
with respect to y

 -−
2 y (-−T1 + T2)

π x2 1 + y2

x2


ⅆy

Log[x2 + y2] (T1 -− T2)

π

And because I integrated with respect to dy, I need to add an unknown function of x, getting
Log[x2 + y2] (T1 -− T2)

π
+ g[x]

g[x] +
Log[x2 + y2] (T1 -− T2)

π

as a candidate v function with symbolic x hang-on function. At this point I can differentiate 
the last expression with respect to x to look for the x aspect of v

Dg[x] +
Log[x2 + y2] (T1 -− T2)

π
, x

2 x (T1 -− T2)

π x2 + y2
+ g′[x]

and the above quantity can be set equal to the partial of v with respect to x which I already 
have (which is equal to the negative of the partial derivative of u with respect to y), thus

-−D[v[x, y], x] = -−
2 (-−T1 + T2)

π x 1 + y2

x2


=
2 x (T1 -− T2)

π x2 + y2
+ g′[x]

Leaving the negative sign in for consistency

Solve-−
2 (-−T1 + T2)

π x 1 + y2

x2


==
2 x (T1 -− T2)

π x2 + y2
+ g′[x], g′[x]

{{g′[x] → 0}}

Here I assert that integrating at this point produces g[x] equal to simply C, and I decide to 
set C=0.
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Here I assert that integrating at this point produces g[x] equal to simply C, and I decide to 
set C=0.

And from here I should be able to build the v function from

v[x_, y_] = FullSimplify
Log[x2 + y2] (T1 -− T2)

π


Log[x2 + y2] (T1 -− T2)

π

And the entire complex potential should be equal to

T1 +
2

π
(T2 -− T1) ArcTan

y

x
 + ⅈ

Log[x2 + y2] (T1 -− T2)

π

T1 +
ⅈ Log[x2 + y2] (T1 -− T2)

π
+
2 ArcTan y

x
 (-−T1 + T2)

π

Again the Ψ is much different from the text. To defend my answer I need to verify that Φ 
and Ψ are analytic.
PossibleZeroQ[D[u[x, y], x] -− D[v[x, y], y]]

True

PossibleZeroQ[D[u[x, y], y] + D[v[x, y], x]]

True

So according to numbered line (2) on p. 760, Φ and Ψ together make up a complex poten-
tial, the thing I was looking for. The yellow cell above matches (in intent though not in 
content) the text answer. 

9. Upper half-plane

Clear["Global`*⋆"]

kru = RGBColor[0.392, 0.823, 0.98];
innerbw = RGBColor[.97, .97, .994];

This problem is basically the same as example 3 on p. 760, applying a heat perspective 
instead of an electrostatic perspective. From there, the solution equation looks like
Φ[x, y] = a + b Arg[z]

Note here that the algebraic a and b in the above expression are unrelated to the points in 
the sketch.

There are three phi functions, according to location, call them Φ1, Φ2, and Φ3, separated by 
the points a and b. The two quantities Φ1 and Φ3 both have the π angle, the same as Φ2. 
However, because they have zero temperature, their contributions disappear, leaving only 
Φ2, which has both magnitude and angle. So the equation for phi reduces to simply  
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There are three phi functions, according to location, call them Φ1, Φ2, and Φ3, separated by 
the points a and b. The two quantities Φ1 and Φ3 both have the π angle, the same as Φ2. 
However, because they have zero temperature, their contributions disappear, leaving only 
Φ2, which has both magnitude and angle. So the equation for phi reduces to simply  

0 + b Arg[z] = Φ2 =
T1
π

θ =
T1
π

ArcTan
y

x


The angle y
x  has an interpretation here, because in this problem the x interval is subdi-

vided. It is necessary to get rid of everything that does not describe T1, which is all x 
beyond the T1 segment. To do this can look like the following:

T1
π

ArcTan
y

x -− b
 -− ArcTan

y

x -− a


Now heading toward the complex potential form. The part in parentheses above could be 
treated like in problem 15 below, since it is the Arg,

Φ + ⅈΨ =
ⅈ T1
π

Log
y

x -− b
 -− Log

y

x -− a
 =

ⅈ T1
π

Log
y

x -− b
 + Log

x -− a

y
 =

ⅈ T1
π

Log
x -− a

x -− b


When substituting ⅈ Log for Arg it is necessary to remember the minus sign.

11. Upper half-plane

Clear["Global`*⋆"]

kru = RGBColor[0.392, 0.823, 0.98];
innerbw = RGBColor[.97, .97, .994];

This is apparently like problem 9, except that now the points a and b are assigned specific 
values. Again I look to example 3 on p. 760, applying a heat perspective instead of an elec-
trostatic perspective. From there, the solution equation is
Φ[x, y] = a + b Arg[z]

Here there are no labels on the sketch to confuse with the variables in the equation above.

There are again three phi functions, according to location, call them Φ1, Φ2, and Φ3, sepa-
rated by the points {-1,0} and {1,0}. The two quantities Φ1 and Φ3 both have the π angle, 
the same as Φ2. However, because they have zero temperature, their contributions disap-
pear, leaving only Φ2, which has both magnitude and angle. So the equation for phi reduces 
to simply  
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There are again three phi functions, according to location, call them Φ1, Φ2, and Φ3, sepa-
rated by the points {-1,0} and {1,0}. The two quantities Φ1 and Φ3 both have the π angle, 
the same as Φ2. However, because they have zero temperature, their contributions disap-
pear, leaving only Φ2, which has both magnitude and angle. So the equation for phi reduces 
to simply  

0 + b Arg[z] = Φ2 =
T1
π

θ =
T1
π

Arg[z] =
100

π
Arg[z]

The axis is clearly labeled x, but since y is equal to zero, the expression above is still true. 
And, applying the point location elimination,

Φ =
100

π
(Arg[z -− 1] -− Arg[z -− (-−1)]) =

100

π
(Arg[z -− 1] -− Arg[z + 1])

Now it is time to push for the complex potential expression, and as in problem 15, and 
retaining the z nomenclature to agree with text,

Φ + ⅈΨ =
ⅈ 100

π
(-−Log[z -− 1] + Log[z + 1]) =

ⅈ 100

π

Log[z + 1]

Log[z -− 1]

13. Corner

Clear["Global`*⋆"]

kru = RGBColor[0.392, 0.823, 0.98];

I can tell from the text answer that this one will require a mapping, and the text answer 
suggests using w=z2.

Setting up a list of test points
sx = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}

{{0, 0}, {0, 1}, {1, 0}, {1, 1}}

And a point translation function independent of the plot

gp[{x_, y_}] = NRe(x + I y)2, NIm(x + I y)2

Re(x + (0. + 1. ⅈ) y)2, Im(x + (0. + 1. ⅈ) y)2

to get sample points for direct plotting
Thread[gp[ sx]]

{{0., 0.}, {-−1., 0.}, {1., 0.}, {0., 2.}}
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and then showing the plot

From working other problems I know that any intervals associated with zero temp will 
disappear, so I don’t include these in the plot. Φ1 is from B to A on w-plane, Φ2 is from A to 
C. Both functions have an angle component of π, and the same temperature, 100 ℃. I can 
see that the answer will be of the form

Φ1 + Φ2 =
100

π
(Arg[BA]) +

100

π
(Arg[AC])

The 100π  part does not need re-translation back to the z-plane. And the z2 mapping function 

is simple enough that it can be expressed in the answer. Now looking at the Arg function, I 
see it follows the boundary of the w=z2 curve, and is offset on each side by the locations of 
B and C. The Arg expression will be affected by B and C in a similar way to the way an 
expression for a circle is affected by the coordinate of its center. And the mirror image of 
the function curves indicates a collision in sign, which will show up as

Φ1 + Φ2 =
100

π
Argz2 -− 1 -−

100

π
Argz2 + 1 =

100

π
Argz2 -− 1 -− Argz2 + 1

15. Sector

Clear["Global`*⋆"]

kru = RGBColor[0.392, 0.823, 0.98];

Starting with the statement that a potential in an angular region with sides at constant 
temperature has the form
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T = a Arg[z] + b

b + a Arg[z]

As stated in the text, Arg[z]=θ=Im[Log[z]] is a harmonic function. The coefficients a and b 
are boundary conditions determined with the initial conditions. On the horizontal axis 
Arg[z] = 0, which makes it easy to calculate b since T=0+b=-−20. For the other leg, Arg[z] 
= π4  is straightforward because b has already been calculated

Solvea
π

4
-− 20 ⩵ 60, a

a →
320

π


Tf = T /∕. a →
320

π
, b → -−20

-−20 +
320 Arg[z]

π

The above cell matches the text answer. But it remains to find the complex potential. 
Pulling out an oldie but goodie from numbered line (2) on p. 637, Ln[z]=ln[Abs[z]]+ⅈ 
Arg[z], (with z≠0).

Since in Mathematica each complex z is treated and reported as a principal value, the text’s 
nomenclature is used in highlighted yellow above. Numbered line (3) on p. 637 should be 
shown as well, ln[z]=Ln[z]±2 n π ⅈ. In other words, as the text uses the term, ln[z], (or in 
this case ln[Abs[z]]), has an infinite number of values, including when n equals zero, mean-
ing the term ln[Abs[z]] is ignorable.

Looking at the identity in numbered line (2), its prominent member is Arg[z], which is 
modified by coefficient ⅈ. In the Φ +ⅈ Ψ which I am building, the Arg[z] will reside in the Ψ, 
so I make use of -−ⅈ Log[z]=Arg[z]. 

So the complex potential can be assigned to the value

-−20 -−
320 ⅈ

π
Log[z]

and since z is understood and agreed by Mathematica to be the principal value, the answer 
is compatible with the text.

17. First quadrant of the z-plane with y-axis kept at 100 ℃, the segment 0<x<1 of the x-
axis insulated and the x-axis for x>1 kept at 200 ℃. Hint. Use example 4.

Clear["Global`*⋆"]

18.3 Heat Problems 767.nb     11



kru = RGBColor[0.392, 0.823, 0.98];
innerbw = RGBColor[.97, .97, .994];

The problem hints that example 4 may be useful. Example 4 uses the ArcSin function to 
map a heated environment onto the w-plane. First step is to create a list of sample points
sx = {{0, 0}, {1, 0}, {1.5, 0}, {0, 1}}

{{0, 0}, {1, 0}, {1.5, 0}, {0, 1}}

and to define an independent function to plot the sample points
gp[{x_, y_}] = {N[Re[ArcSin[(x + I y)]]], N[Im[ArcSin[(x + I y)]]]}

{Re[ArcSin[x + (0. + 1. ⅈ) y]], Im[ArcSin[x + (0. + 1. ⅈ) y]]}

then to display the sample points (uh-oh, look at the third point below)
Thread[gp[ sx]]

{{0., 0.}, {1.5708, 0.}, {1.5708, -−0.962424}, {0., 0.881374}}

then to plot the ArcSin function, which looks pretty ragged with its drooping flagstaff.
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d2 = DiscretizeRegion@ImplicitRegion[0 < x ≤ 1.5  0 < y ≤ 20, {x, y}];
ParametricPlot[ReIm[ArcSin[(x + ⅈ y)]], {x, y} ∈ d2,
PlotRange → {{-−1, 3}, {-−1.5, 4}}, Frame → False,
Axes → True, ImageSize → 200, AspectRatio → Automatic,
Epilog → {{Gray, Rectangle[{0, -−0.1}, {1.57, 0}]},

{Red, PointSize[0.025], Point[{0, 0}]},
{Text[Style[A, Medium], {0, -−0.3}]}, {Green, PointSize[0.025],
Point[{0, 0.88}]}, {Text[Style[D, Medium], {-−0.2, 0.88}]},

{Blue, PointSize[0.025], Point[{1.57, 0}]},
{Text[Style[B, Medium], {1.68, -−0.2}]}, {Black, PointSize[0.025],
Point[{1.57, -−0.96}]}, {Text[Style[C, Medium], {1.7, -−1.06}]}}]

This does not look good. The x-axis beyond point B is being mapped negatively down the 
flagstaff. This is not what example 4 led me to expect. How can this possibly work?

At the Digital Library of Mathematical Functions (https://dlmf.nist.gov/4.23#E16) I found this:

arcsin = -−ⅈ Log1 -− (x + I y)20.5 + ⅈ (x + I y)

which I guess means that I have to take some care if I want to invert the sine function in the 
complex domain. So I will re-do the plot using this new information.
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d2 = DiscretizeRegion@ImplicitRegion[0 < x ≤ 80  0 < y ≤ 100, {x, y}];
sx = {{0.001, 0.001}, {1, 0}, {1.5, 0.001}, {0.001, 1}}

gq[{x_, y_}] = NRe-−ⅈ Log1 -− (x + I y)20.5 + ⅈ (x + I y),

NIm-−ⅈ Log1 -− (x + I y)20.5 + ⅈ (x + I y)

Thread[gq[ sx]]

ParametricPlotReIm-−ⅈ Log1 -− (x + I y)20.5 + ⅈ (x + I y),

{x, y} ∈ d2, PlotRange → {{-−3, 2}, {-−1, 6}}, Frame → False,
Axes → True, ImageSize → 200, AspectRatio → Automatic,
Epilog → {{Gray, Rectangle[{0, -−0.1}, {1.57, 0}]},

{Red, PointSize[0.025], Point[{0.001, 0.001}]},
{Text[Style[A, Medium], {0, -−0.3}]}, {Green, PointSize[0.025],
Point[{0, 0.88}]}, {Text[Style[D, Medium], {-−0.2, 0.88}]},

{Blue, PointSize[0.025], Point[{1.57, 0}]},
{Text[Style[B, Medium], {1.68, -−0.2}]}, {Black, PointSize[0.025],
Point[{1.57, 0.96}]}, {Text[Style[C, Medium], {1.25, 1.06}]}}

{{0.001, 0.001}, {1, 0}, {1.5, 0.001}, {0.001, 1}}

ImLog1. -− 1. (x + (0. + 1. ⅈ) y)20.5 + (0. + 1. ⅈ) (x + (0. + 1. ⅈ) y),

-−1. ReLog1. -− 1. (x + (0. + 1. ⅈ) y)20.5 + (0. + 1. ⅈ) (x + (0. + 1. ⅈ) y)

{{0.001, 0.001}, {1.5708, 0.},
{1.5699, 0.962424}, {0.000707107, 0.881374}}

Okay, this looks better. Since the test points are the same as before except for the sign of 
the v value of point C, I will use the first instantiation of the ArcSine plot, and consider this 
one a visual correction. Just for clarity, D-A is at 100℃, A-B is insulated, and B-C is at 
200℃. Since they are  parallel in the w-plane, it is like a calculation for parallel plates. I 
don’t think there can be two function coefficent terms, and A is located at zero, which I 
think zaps it, leaving the field open for B. So the calculation would be
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Solvea 0 + b ⩵ 100 && a
π

2
+ b ⩵ 200, {a, b}

a →
200

π
, b → 100

Under the reasoning I just used, the π2  in the above set refers to the position of B, not to the 

angle of B-C with the u-axis (also equal to π2 ). The equation for Φ then would be

100 +
200

π
Arg

y

x


in the w-plane. But the solution needs to be referred back to the z-plane where it started, so 
the simple Arg has to be embroidered to express the mapping, I think by writing 

100 +
200

π
ArcSin[z]

In the text answer this expression is

Re[F[z]] = 100 +
200

π
Re[ArcSin[z]]

And I assume it is written this way to make clear that although it has two parts, it is not a 
complex potential.
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